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We present a comparison between the Continuous Time Random Walk (CTRW) model for dispersive transport
and Zwanzig’s model of self-diffusion in liquids using the cage correlation function as a means for obtaining
the characteristic hopping times. This comparison was done using a realistic model for the interactions between
metal atoms in a system that is known to form metallic glasses. We find that although the CTRW model uses
a pathological model for the distribution of waiting times, the predictions of this theory are much closer to
the actual diffusion constants than those obtained via Zwanzig’s model. We also find that there is a simple
linear relationship between the stretching parameter (â) for Kohlrausch-Williams-Watts decay of the cage
correlation function and the dispersion parameter (γ) that characterizes the “fractal” distribution of waiting
times in the CTRW model.

1. Introduction

Solid solutions of silver and copper near the eutectic point
have been historical curiosities since Roman emperors used them
to cut the silver content in the ubiquitousdenariuscoin by
plating copper blanks with the eutectic mixture.1 Curiosity in
this alloy continues to the current day since the discovery that
it forms a glassy material when rapidly quenched from the melt.
The eutectic composition (60.1% Ag, 39.9% Cu) was the first
glassy metal reported by Duwez in 1960.2 The Duwez experi-
ments give us an upper bound on the cooling rate required (≈
106K/s) in this alloy, whereas other metallic glasses (based on
Ti-Zr alloys) can be formed with cooling rates of only 1 K/s.3

There is clearly a great wealth of information waiting to be
discovered in the vitrification and crystallization of liquid alloys.

The Ag-Cu alloy is also of great theoretical interest because
it resembles a model glass-forming Lennard-Jones system that
has correlation functions that decay according to the famous
Kohlrausch-Williams-Watts (KWW) law

Kob and Andersen observed stretched exponential decay of
the van Hove correlation function in a system comprising an
80/20 mixture of particles with different well depths (εAA *
εBB) and different range parameters (σAA * σBB).4,5 They found
that at low temperatures, the best fitting value for the stretching
parameterâ was approximately 0.8. The same system was later
investigated by Sastry, Debenedetti, and Stillinger.6 They
observed nearly identical stretching parameters in the time
dependence of the self-intermediate scattering functionFs(k,t).7

In single component Lennard-Jones systems, the stretching
parameters appear to be somewhat lower. Angelani et al. have
reportedâ ≈ 1/2 for relatively low-temperature Lennard-Jones
clusters, and Rabani et al. have reported similar values for the
decay of correlation functions in defective Lennard-Jones
crystals.

There have been a few recent studies of amorphous metals
using fairly realistic potentials and molecular dynamics meth-
odologies. Gaukel and Schober studied diffusion in Zr67Cu33,8

and Qi et al. have looked at the static properties (g(r), s(k),
etc.) for alloys of Cu with both Ag and Ni.9 None of the metallic
liquid simulation studies have observed time correlation func-
tions in the supercooled liquid nearTg. It would, therefore, be
interesting to know whether these realistic models have the same
anomalous time dependence as the Lennard-Jones systems and,
if so, whether their stretching behavior is similar to that observed
in the two-component Lennard-Jones systems.

Additionally, bi-metallic alloys present an ideal opportunity
for us to apply the cage-correlation function methodology that
one of us developed to study the hopping rate in supercooled
liquids.10-13 In particular, we want to use it to test two models
for diffusion, both of which use hopping times that are easily
calculated by observing the long-time decay of the cage
correlation function. The two models are Zwanzig’s model,14

which is based on the periodic interruption of harmonic motions
around inherent structures, and the Continuous Time Random
Walk (CTRW) model,15-18 which can be used to derive transport
properties from a random walk on a regular lattice where the
time between jumps is nonuniform.

2. Theory

In this section, we give a brief introduction to the models
for diffusion that we will be comparing, as well as a brief
description of how one can use the cage-correlation function to
obtain hopping rates in liquids.

2.1 Zwanzig’s Model.In his 1983 paper14 on self-diffusion
in liquids, Zwanzig proposed a model for diffusion that consisted
of “cells” or basins in which the liquid’s configuration oscillates
until it suddenly finds a saddle point on the potential energy
surface and jumps to another basin. This model was based on
and supported by simulations done by Stillinger and Weber,19-22

in which the liquid configurations generated by molecular
dynamics were quenched periodically by following the steepest
descent path to the nearest local minima on the potential energy† Part of the special issue “William H. Miller Festschrift”.

C(t) ≈ A exp [-(t/τ)â] (1)
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surface. Stillinger and Weber found that as their simulations
progressed, the quenched configurations were stable for short
periods of time and then suddenly jumped (with some re-
crossing) to other configurations.20

The starting point in Zwanzig’s theory is the Green-Kubo
formula7,23 for the self-diffusion constant

where〈v(t)‚v(0)〉 is the time-dependent velocity autocorrelation
function. Zwanzig’s model predicts the diffusion constant using
τ, the lifetime that characterizes the distribution (exp(-t/τ)) of
residence times in the cells.

Following a jump, the coherence of the harmonic oscillations
is disrupted, so all correlations between velocities will be
destroyed after each jump. Zwanzig writes the velocity auto-
correlation function in terms of the velocities of the normal
modes in the nearest cell. The normal-mode frequencies are
characterized by the normalized distribution functionF(ω), and
the time integral can be solved assuming the time dependence
of a damped harmonic oscillator for each of the normal modes.
In the continuum limit of normal-mode frequencies, one obtains

whereM is the mass of the particles.
Zwanzig does not explicitly derive the inherent structure

normal modes from the potential energy surface (he used the
Debye spectrum forF(ω)). Moreover, the theory avoids the
problem of how to estimate the lifetimeτ for cell jumps that
destroy the coherent oscillations in the sub-volume. Neverthe-
less, the model fits the experimental results quite well for the
self-diffusion of tetramethylsilane (TMS) and benzene over large
ranges in temperature.24,25

2.2 CTRW Model. In the CTRW model,15-18 random walks
take place on a regular lattice but with a distribution of waiting
times

between jumps.γ ) 1 represents normal transport, whereasγ
< 1 represents transport in a “fractal time” regime. In this
regime, the number of jumps grows in timet as tγ and not
linearly with time. This dependence implies that the jumps do
not possess a well-defined mean waiting time and that there is
no way to define a hopping rate for systems that are operating
in the fractal time regime. (The two functional forms for the
waiting time distribution appear odd at first, but they are
connected smoothly by way of their Laplace transforms

The inverse transform of this function results in the exponential
form whenγ ) 1, and in the second form whenγ < 1.)

Klafter and Zumofen have derived probability distributions
for transport in these systems.16 In theγ ) 1 limit, they obtain
the standard diffusive behavior in which the diffusion constant
is inversely proportional toτ and proportional to the square of
the lattice spacing for the random walk (σ0)

This behavior is also suggested by our estimates ofτ in CS2

and in Lennard-Jones systems using the cage correlation
function.11,12

Whenγ < 1, the situation is somewhat more complex. The
mean-square displacement can be approximated at long times
as

Note that there is no well-defined diffusion constant for transport
that behaves according to this expression.

The waiting time distribution in eq 4 can be used to derive
a sticking probability

which is the probability of not having made a jump until time
t. The long-time behavior of this function should be directly
related to the long-time behavior of the cage correlation function,
which is essentially a measurement of the fraction of atoms that
are still within their initial surroundings. For theγ < 1 case,
the distribution of waiting times in eq 4 results in sticking
probability that decays ast-γ. This is a very different behavior
than the KWW law (eq 1) that has been observed in the defective
Lennard-Jones crystals.12

Ngai and Liu have asserted that the KWW decay law (eq 1)
cannot be explained through the use of the waiting time
distribution in eq 4.26 Instead, they propose a distribution

which can explain the experimentally observed decay. The form
of the waiting time distribution in eq 4 is more amenable to
analytical approaches to calculating transport behavior. Blumen,
et al. have investigated both proposed functional forms foræ(t)
for recombination phenomena15 and found that eq 9 leads to
time-independent rates at longer times. All of the moments of
the distribution in eq 9 are finite, so it would produce a Gaussian
random walk at long times. Blumen, et al. conclude that in order
to observe anomalous transport, waiting time distributions with
pathological long-time tails are required. Indeed, a connection
between the algebraic waiting time distribution in eq 4 and the
KWW decay law can be made when the diffusing species are
migrating defects.27-29

2.3 Cage Correlation Function. In a recent series of
papers,10-13,30,31 one of us has been investigating approaches
to calculating the hopping rate (kh ) 1/τ) in liquids, supercooled
liquids, and defective crystals. To obtain this estimate, we
introduced thecage correlation function,which measures the
rate of change of atomic surroundings and associates the long-
time decay of this function with the basin hopping rate for
diffusion. The details on calculating the cage correlation function
can be found in Refs 10 and 11, but we will briefly review the
concept here.

An atom’s immediate surroundings are best described by the
list of other atoms in the liquid that make up the first solvation
shell. When a diffusive barrier crossing involving the atom has
occurred, the atom has left its immediate surroundings. Fol-
lowing the barrier crossing, it will have a slightly different group
of atoms surrounding it. If one were able to paint identifying

D ) 1
3∫0

∞
dt〈v(t)‚v(0)〉 (2)

D ) kT
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numbers on each of the atoms in a simulation and to keep track
of the list of numbers that each atom could see at any time,
then the barrier crossing event would be evident as a substantial
change in this list of neighbors.

The cage correlation function uses a generalized neighbor
list to keep track of each atom’s neighbors. If the list of an
atom’s neighbors at timet is identical to the list of neighbors
at time 0, the cage correlation function has a value of 1 for that
atom. If any of the original neighbors aremissingat time t, it
is assumed that the atom participated in a hopping event, and
the cage correlation function is 0. The atom’s surroundings can
also change due to vibrational motion, but at longer times, the
cage will reconstitute itself to include the original members.
Only those events which result in irreversible changes to the
surroundings will cause the cage to decorrelate at long times.
The mathematical formulation of the cage correlation function
is given in Refs 10 and 11.

Averaging over all atoms in the simulation and studying the
decay of the cage correlation function gives us a way to measure
the hopping rates directly from relatively short simulations. We
have used the cage correlation function to predict the hopping
rates in atomic10 and molecular11 liquids, as well as in defective
crystals.12,13 In the defective crystals, we found that the cage
correlation function, after being corrected for the initial vibra-
tional behavior at short times, decayed according to the KWW
law (eq 1) with a stretching parameterâ ≈ 1/2. Angelani et al.
have also reportedâ ≈ 1/2 for relatively low temperature
Lennard-Jones clusters. This is notably different behavior from
the correlation functions calculated for the Lennard-Jones
mixtures that have been studied by Kob and Andersen,4,5 and
Sastry et al.6 In this system, the stretching parameter was closer
to 0.8.

This paper will concentrate on the use of the cage correlation
function to obtain hopping times for use by the Zwanzig and
CTRW models for diffusion in the Ag6Cu4 melt. We are also
looking for the presence of anomalous dynamical behavior in
the supercooled liquid at temperatures just above the glass
transition to confirm the behavior observed in the simpler
Lennard-Jones system. Section 3 will outline the computational
methods used to perform the simulations. Section 4 contains
our results, and section 5 concludes.

3. Computational Details

Several different pseudo-atom models have been developed
that reasonably describe potentials in transition metals. In
particular, the Embedded Atom Model (EAM)32 and Sutton-
Chen (SC)33 potentials have been used to study a wide range
of phenomena in metals.34-36 Both potentials are based on a
similar model of a liquid metal, which treats the nuclei and core
electrons as pseudo-atoms embedded in the electron density due
to the valence electrons on all of the other atoms in the system.
The SC potential takes the simplest form

whereVij
pair andFi are given by

Vij
pair is a repulsive pairwise potential that accounts for interac-

tions of the pseudo-atom cores. ThexFi term in eq 10 is an

attractive many-body potential that models the interactions
between the valence electrons and the cores of the pseudo-atoms.
Dij, Dii, ci, andRij are parameters used to tune the potential for
different transition metals. The SC formulation of a metallic
potential is advantageous because it closely resembles the form
of the ubiquitous Lennard-Jones potential. This resemblance
allows for the use of standard mixing rules in simulations of
alloys.

We have chosen the Sutton-Chen potential with the same
parametrization as Qi et al.9 These parameters were obtained
via empirical and ab initio calculations to match structural
features of the fcc crystal.

To study the long-time portions of the correlation functions
in this system without interference from the simulation meth-
odology, we carried out molecular dynamics simulations in the
constant-NVE ensemble. The density of the system was taken
to be 8.742 g/cm3. This density was chosen immediately to the
liquid side of the melting transition from the constant thermo-
dynamic tension simulations of Qi et al. Their simulations gave
excellent estimates of phase and structural behavior, and should
be seen as a starting point for investigations of these materials.

The equations of motion were integrated using the velocity
Verlet integrator with a time step of 1 fs. A cutoff radius was
used in whichrij

cut ) 2Rij. Nine independent configurations of
500 atoms were generated by starting from an fcc lattice and
randomly choosing the identities of the particles to match the
Ag6Cu4 compsition, which is near the eutectic composition for
this alloy.37

Each configuration was started at a temperature of 1350 K
(well in excess of the melting temperature at this density) and
then cooled in 50 K increments to 400 K. At each temperature
increment, the systems re-sampled velocities from a Maxwell-
Boltzmann distribution every ps for 20 ps, after which they were
allowed to equilibrate for 50 ps. Following the equilibration
period, we collected particle positions and velocities every ps
for 250 ps. The lower temperature runs (375, 350, 325, and
300 K) were sampled for 500 ps, 1, 1, and 7 ns respectively to
accumulate more accurate long-time statistics. Cooling in this
manner leads to a effective quenching rate of approximately
1011 K/s. This quenching rate is much larger than those that
are achieved through experimental methods, which typically are
on the order of 106 or 107 K/s depending on the quenching
method.2

4. Results

The simulation results were analyzed for several different
structural and dynamical properties. Figure 1 shows the pair
correlation function

at seven temperatures ranging from liquid to supercooled liquid.
The appearance of a split second peak in the radial distribution
function has been proposed as a signature of the glass transi-
tion.38 This behavior is evident in Figure 1 for temperatures
below 500 K.

Wendt and Abraham have proposed another structural feature
to estimate the location of the glass transition. Their measure

is the ratio of the magnitude of the first minimum,gmin to the

g(r) )
V

N2
〈∑

i
∑
j * i

δ(r - r ij)〉 (12)

RWA )
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Utot ) ∑
i

[12 ∑
j * i

DijVij
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first maximum,gmax in the radial distribution function. Accord-
ing to their estimates, when the value ofRWA reaches 0.14, the
system has passed through the glass transition.39 We observed
a Tg

WA of 547 K given a cooling rate of 1.56× 1011 K/s.
Goddard, et al. observed aTg

WA ≈ 500 K for a cooling rate of
2 × 1012 K/s in constant temperature, constant thermodynamic
tension (TtN) simulations.9

We note that the split second peak ing(r) appears atTg
WA, a

temperature for which the diffusion constant is still an ap-
preciable fraction of it’s value in the liquid phase. We also note
that diffusive behavior continues at the lowest simulated
temperature of 300 K indicating that glass transition for our
system lies below 300 K. Taking the operational definition of
the glass transition to be the temperature at which the viscosity
exceeds 1013 poise,38 it is obvious that neither of these structural
factors should be considered a definitive marker ofTg. It has
also been noted in previous papers that changes in these
structural factors can occur in certain supercooled metallic
liquids independently of glassy behavior.40,41 However, both
structural features seem to mark the onset of anomalous
thermodynamic and dynamical behavior and should at best be
taken as evidence of the location of the mode coupling theory
(MCT) critical temperature,Tc, and notTg itself.

To compute diffusion constants using Zwanzig’s model (eq
3), one must obtain an estimate of the density of vibrational
states (F(ω)) of the liquid. We obtained theF(ω) in two different
ways, first by quenching 20 high-temperature (1350 K) con-
figurations to the nearest local minimum on the potential energy
surface. These structures correspond to inherent structures on
the liquid-state potential energy surface. Normal modes were
then calculated for each of these inherent structures by diago-
nalizing the mass-weighted Hessian to give the squares of the
normal-mode frequencies. The second method we used for
determining the vibrational density of states was to compute
the normalized power spectrum of the velocity autocorrelation
function

for trajectories which hover just above the inherent structures.
To calculate the power spectrum, a small amount of kinetic
energy (8 K) was given to each of the 20 inherent structures,
and the system was allowed to equilibrate for 30 ps. After
equilibration, the velocity autocorrelation functions were cal-
culated from relatively short (30 ps) trajectories, and the density
of states was obtained from a simple discrete Fourier transform.
At this low temperature, the particles do not diffuse, so the
velocity correlation function does not decay due to hopping.
This implies that the Fourier transform of〈v(t)‚v(0)〉 is 0 atω
) 0

Both of these methods result in similar gross features for the
density of states, but there are some important differences in
their estimates at low frequencies. Notably, the normal mode
density of states (Fq(ω)) is missing some of the low-frequency
modes at frequencies below 10cm-1. The power spectrum
(F0(ω)) recovers these modes but gives a much noisier estimate
for the density of states.

We determined that with a radial cutoff of 2Rij, the potential
(and forces) exhibited a large number of discontinuities which
made the minimization into the inherent structures somewhat
challenging. In this type of potential, the discontinuities at the
cutoff radiuscannotbe fixed by shifting the potential as is done
with the Lennard-Jones potential. This limitation is due to the
nonadditive nature of the density portion of the potential
function. To address this problem, the minimizations and
frequencies were obtained with a radial cutoff of 3Rij, which
provided a surface of adequate smoothness. The larger cutoff

Figure 1. Radial distribution functions for Ag6Cu4. The appearance
of the split second peak at 500 K indicates the onset of a structural
change in the supercooled liquid at temperatures aboveTg.

Figure 2. Wendt-Abraham parameter (RWA) as a function of temper-
ature.Tg

WA ≈ 540 K for a cooling rate of 1.56× 1011 K/s.

Figure 3. Density of states calculated from quenched normal modes,
Fq(ω), and from the Fourier transform of the velocity autocorrelation
function, Fo(ω).

F0(ω) ) ∫-∞

∞
〈v(t)‚v(0)〉 e-iωt dt (14)
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radius requires a larger system size, and so, for the minimiza-
tions and the calculation of the densities of states, we used a
total of 1372 atoms.

We note that one possible way to provide a surface without
discontinuities would be to use a shifted form of the density

This modification substantially alters the attractive portion of
the potential and has a deleterious effect on the forces. A similar
shifting in the Lennard-Jones or other pairwise-additive
potential would not exhibit this problem. Although this modi-
fication does provide a much smoother potential, it would
properly require a re-parametrization ofci andDii, tasks which
are outside the purview of the current work.

4.1 Diffusive Transport and Exponential Decay.Transla-
tional diffusion constants were calculated via the Einstein
relation23

using the slope of the long-time portion of the mean square
displacement. We show an Arrhenius plot of the natural
logarithm of the diffusion constant vs 1/T in Figure 4.

The structural features that we noted previously (i.e., the split-
second peak ing(r) andTg

WA) appear at the same temperature
at which the log of the diffusion constant leaves the traditional
straight-line Arrhenius plot.

Truhlar and Kohen have suggested an interpretation of this
type of plot based on Tolman’s interpretation of the activation
energy.42-44 Specifically, positive convexity in Arrhenius plots
requires the average energy of all diffusing particles rise more
slowly then the average energy of all particles in the ensemble
with increasing temperature. This only occurs if the microca-
nonical-ensemble diffusion constant,D(E), decreases with
increasing energy. Truhlar and Kohen explain that one possible
explanation of this behavior is if configuration space can be
decomposed into two types of conformation, one which is
“reactive” in which diffusive hopping occurs with a rate constant
of KR(E), and one in which there is no diffusion. If the

probability of being found in the reactive region is given by
PR(E), then the overall diffusion constant

would allow PR(E) to decrease withE faster thanKR(E) can
increase. In other words, higher energy systems explore a larger
segment of phase space and spend a smaller fraction of their
time in regions where there is a probability of diffusive hopping.
As the energy is decreased, more time is spent in regions of
configuration space where diffusive hopping is allowed soD(E)
should increase with decreasingE.

In Figure 5 , weshow the diffusion constants calculated via
the Einstein relation eq 16 along with results for the Zwanzig
and CTRW (γ ) 1) models using hopping times obtained from
simple linear fits to the long-time decay of the cage correlation
function. For Zwanzig’s model, we show results using the two
different estimates for the vibrational density of states. For the
CTRW model, we have used a jump length (σ0) of 1.016 Å for
all temperatures shown.

Zwanzig’s model is extremely sensitive to the low-ω portion
of F(ω),11 so it is no surprise that the choice of the density of
states gives a large variation in the predicted results. The
agreement with the diffusion constants is better at lower
temperatures, but we observe an obviously incorrect temperature
dependence in the higher temperature liquid regime.

The CTRW model withγ ) 1 and an assumption of fixed
jump distances gives much better agreement in the liquid regime,
and the trend with changing temperature seems to be in excellent
agreement with the Einstein relation.

Delving a bit more deeply into the CTRW predictions, we
can assume that the distribution of hopping times is well behaved
(i.e.,γ ) 1) but that the jumpdistanceis temperature dependent.
To obtain estimates of the jump distance as a function of
temperature,σ0(T), we can invert (eq 6) by multiplying the cage-
correlation hopping time by the self-diffusion constant. We show
the temperature-dependent hopping distances in Figure 6. Note
that these assumptions would lead us to believe that the average
jump distance is increasing sharply as one approaches the glass
transition, which could be an indicator of motion dominated
by Levy flights.17,18

4.2 Nondiffusive transport and nonexponential decay
A much more realistic scenario is that the distribution of

hoppingtimeschanges while the jump distance remains the same

Figure 4. Arrhenius plot of the self-diffusion constants indicating
significant deviation from Arrhenius behavior at temperatures below
450 K.

Fi ) ∑
j * i (Rij

rij )mij

- ( Rij

rij
cut)mij

(15)

D ) lim
tf∞

1
6t

〈|r i (t) - r i (0)|2〉 (16)

Figure 5. Self-diffusion constant for the two models under consider-
ation compared to the values computed via standard techniques.

D(E) ) PR(E) KR(E) (17)
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at all temperatures. In Figures 7 and 9, we show the effects of
relaxing the linear fits of〈r2(t)〉 and of the long time portion of
ln[Ccage(t)]. To fit the mean square displacements, we performed
weighted nonlinear least-squaresd fits using the CTRW (γ <
1) expression for the mean square displacement (eq 7). The only
free parameter in the fit is the jump distance, which we fixed
at a value of 1.016 Å, the optimal jump distance for theγ ) 1
case. These fits allow us to obtain estimates ofγ and the hopping
timesτ directly from the mean square displacements. A sample
of the a fit of the CTRW form of the〈r2(t)〉 (eq 7) at a
temperature of 325K is shown in Figure 8.

The cage correlation functions were fit to the KWW law (eq
1), after correcting for the short-time (i.e.,< 1 ps) vibrational
decay. The values ofγ from the〈r2(t)〉 fits are shown with the
KWW stretching parameters in Figure 7. Note that fits forγ
and the KWW stretching parameters both begin to show
deviation from their more normal high-temperature behavior at
approximately the same temperature as the appearance of the
structural features (Tg

WA, and the split second peak ing(r))
noted above.

There is a small discrepancy between the stretching param-
eters (â) for the KWW fits and the values ofγ for the CTRW
fits to the time dependence of the mean-square displacement.

Although there is not enough data to make a firm conclusion,
it would appear that there is a small constant offset

with a ≈ 0.06 for this system. On the basis of the defect
diffusion picture due to Blumen, Klafter, and Shlesinger,27-29

one would expect thatâ ) γ. The discrepancy could be due in
part to the sensitivity of the cage correlation function to
intermediate time scales (i.e., 10-30 ps). Observations at these
times will be susceptible to the effects of short-lived inhomo-
geneities, whereas the CTRW fits (done over time scales from
10 ps- 1 ns) will show only the effects of inhomogeneities
which persist for longer times. Because inhomogeneity can lead
to the stretching behavior,38 the values of the stretching
parameter obtained from the longer time fits are the most
relevant for understanding the process of vitrification.

In Figure 9, we show the hopping times for both models. As
expected, the hopping times diverge as the temperature is

Figure 6. CTRW hopping distance,σ0(T), as a function of temperature
assumingγ ) 1 and using the cage correlation hopping times.

Figure 7. Comparison of exponential stretching coefficients,â from
the cage-correlation function andγ from CTRW theory.

Figure 8. A fit of the mean square displacement at 325 K to the
nonlinear form obtained via the CTRW model (eq 7).

Figure 9. The characteristic hopping time,τhop, which characterizes
the waiting time distribution. The solid circles represent hopping times
predicted from KWW fits to the cage-correlation function. The open
triangles represent the characteristic time calculated via the CTRW
model for 〈r2(t)〉.

â ≈ γ - a (18)
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lowered closer to the glass transition. There is relatively good
agreement between the hopping times calculated via CTRW
approach with those calculated via the cage correlation function,
although the error is as much as a factor of 3 discrepancy at
the lowest temperatures.

5. Discussion

It is relatively clear, from using the cage correlation function
to obtain hopping times, that the CTRW approach to dispersive
transport gives substantially better agreement than Zwanzig’s
model, which is based on interrupted harmonic motion in the
inherent structures. The missing piece of the CTRW theory is
the average hopping distanceσ0. A method for calculatingσ0

from short trajectories would make it much more useful for the
calculation of diffusion constants in theγ ) 1 limit.

In the low-temperature supercooled liquid, there are substan-
tial deviations from theγ ) 1 limit of the theory at temperatures
below 500 K. Below this temperature, the mean square
displacement cannot be fit well with a linear function in time,
and the cage correlation function no longer has a simple
exponential decay. In this paper, we have attempted to use the
waiting time distribution due to Klafter et al.15-18 The Laplace
transform of eq 4 lends itself to the derivation of an analytical
form for the propagator for dispersive transport.16 However, it
is somewhat troubling that the cage correlation function (which
has proven itself to be a good indicator of the average decay of
atoms from their initial sites) cannot be fit with a sticking
probability that is commensurate with eq 4 without reverting
to an intermediary defect diffusion model.27-29

Instead, we have been able to fit the long-time decay of the
cage correlation function with the more familiar Kohlrausch-
Williams-Watts law (eq 1), which appears to be a more
accurate model for the sticking probability in this system. As
formulated, the cage correlation function is adirect measure of
the sticking probability for individual atoms, so there remains
a troubling discrepancy in reconciling the CTRW approach to
the data from our simulations. However, the similarity of the
values forγ andâ from these two different methods is evidence
that there is a single mechanism underlying both the intermedi-
ate-time nonexponential decay of the cage correlation function
and the long-time nondiffusive transport.
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TABLE 1: Parameters for Sutton-Chen Many-Body
Potentiala

D (meV) c m n R (Å)

Ag 4.0072 94.948 6 11 4.0691
Cu 5.7367 84.843 5 10 6.6030
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